x^2+5x-2040=0

Simple and best practice solution for x^2+5x-2040=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+5x-2040=0 equation:



x^2+5x-2040=0
a = 1; b = 5; c = -2040;
Δ = b2-4ac
Δ = 52-4·1·(-2040)
Δ = 8185
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{8185}}{2*1}=\frac{-5-\sqrt{8185}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{8185}}{2*1}=\frac{-5+\sqrt{8185}}{2} $

See similar equations:

| m−1=7 | | ((b-1)/4)+((2b-3)/4)=b-(1/2) | | 2x=(-1/9)x^2 | | ((b-1)/4)+((2b-3)/4)=b-1/2 | | (3x^2)(8x)=0 | | 72=2x-8 | | ((b-1)/4)+(2b-3)/4=b-1/2 | | 7*4^x=89 | | 2(x-3)+5(x-1)=4 | | 5^(3x-1)=24 | | 5^3x-1)=24 | | (10x+30)=(8x-3) | | (4x+16)/(2x+4)=0 | | 2^x=1.03 | | G^2-8g+7=0 | | 7(2-x+9=2 | | (2x+4)/(4x+16)=0 | | (3x+15)+(2x)=90 | | (3x-15)+(2x)=90 | | 42=15+2x | | -7(2t+2)=42 | | -3u+12u+6=7u=30 | | -10(s+3)=-89 | | 12m+50=949.38 | | 2(r+3)-4r=18 | | (7x-8)^2=0 | | y=1.75+36 | | 23/x+10=1/4 | | -3x+10=-5+2x | | 3(x+1)-1-x-1=6 | | 15t^2-15t-13=0 | | 6x-3(6)=-18 |

Equations solver categories